Epigenetics Gene Expression Definition

The first introduction to psychology usually comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they physically function and, to a certain extent, how they act or what illnesses they might develop. But hardly any of these students have a clear understanding of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of development, the genes passed from one generation to the next only need to survive. Genes are nothing more than instructions for doing things. People, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The foundation for this programming is that the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, grandparents, or other kin will determine such behaviour.

In terms of understanding what is happening genetically, we’re still in the age of molecular biology. In this frame, genes are simply packets of information carrying instructions. This is the way humans, plants and animals have been growing for thousands of years. Nevertheless, in the past 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we can view the relationships between behaviour and genes.

The molecular basis for human and behaviors memory is actually quite simple – it is all about the epigenome. The Epigenome is a cellular memory storage that determines whether or not a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying amounts. Most of the variations come from the variation in the copies of genes inside the cellular memory storage of the person. The copy of the gene which determines the behavior is called the epigome. It’s this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been revealed in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between individuals who had identical twins but whose traits were quite different. This study provided the first evidence of the importance of the epigenome in human behaviour and its link to abnormal behavioral disorders such as autism.

Even though the significance of this Epigenome in psychology was established, many in the emotional area are hesitant to accept its potential as a significant element in mental illness. 1 reason for this is that it is hard to define an actual genetic sequence or locus that leads to a behavioral disorder. Another problem is that there are just too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work has to be done to determine the role that genetics play in complex diseases such as schizophrenia. If this finding holds true, it can be used as a foundation for studying other complex diseases that have complex genetic components.

If you are interested in knowing more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My website discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the ecological causes of disease, but I also have been involved in studying the relationship between Epigenetics and Autism. My future posts will also discuss diseases of the mind which can be impacted by Epigenetics.