Oprah Winfrey When She Was Little

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain degree, how they act or what illnesses they might develop. But hardly any of these students have a clear understanding of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of evolution, the genes passed from one generation to the next only need to survive. Genes are merely instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The basis for this programming is that the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behaviour.

In terms of understanding what is going on genetically, we are still in the era of molecular biology. In this frame, genes are simply packets of information carrying directions. This is the way humans, plants and animals have been evolving for centuries. However, in the last 50 years or so, a revolution in the field of psychology has occurred known as molecular biology or genomics. Genomics provides a new lens through which we could view the relationships between behaviour and genes.

The molecular basis for behaviors and human memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage which determines whether or not a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes inside the mobile memory storage of the person. The copy of the gene which determines the behaviour is called the epigome. It is this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been shown in a landmark study on twins. For years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the importance of the epigenome in human behavior and its connection to abnormal behavioral disorders such as autism.

Even though the importance of this Epigenome in psychology was established, many in the emotional area are hesitant to accept its potential as a significant factor in mental illness. One reason for this is it is hard to define an actual genetic sequence or locus that leads to a behavioral disorder. Another issue is that there are simply too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, even though the research on the Epigenome has been promising, more work has to be done to find out the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be used as a foundation for analyzing other complicated diseases that have complex genetic components.

If you are interested in learning more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My website discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the environmental causes of disease, but I also have been involved in studying the relationship between Epigenetics and Autism. My future articles will also talk about diseases of the brain which can be affected by Epigenetics.